If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-16x-12=0
a = 8; b = -16; c = -12;
Δ = b2-4ac
Δ = -162-4·8·(-12)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{10}}{2*8}=\frac{16-8\sqrt{10}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{10}}{2*8}=\frac{16+8\sqrt{10}}{16} $
| x+11=4x-22 | | 3x+8x+5x=2x+11 | | (2x+12)°+(4x+32)=90° | | 2y+y^2=48 | | 4^x+2^x=272 | | 3x+5x=2x+5 | | 9+7x=7x2 | | 2^3-6=6-2^3v | | 0.4x+0.21x-0.16=12.04 | | 4.8+10m=8.47 | | 17a-15a=8 | | M2-4m-5=0 | | 100-12.5x=50 | | x+10+3x-15+5x-4=180 | | 4/4x=0 | | 3x+26=8x+46 | | 4(x)=5x-3 | | x+3/5x=56 | | 5x+(-14)=3x | | -10x+3(8+8x)=6(x-4) | | 9u-u=56 | | 3x+5+4x+10=5x-25 | | 8y+14=3+2y | | F(x)=x2-3x+2 | | 3z-16=2z+14 | | 10t+15=-60 | | x÷0.6=9.3 | | 4z–11=5 | | 6y+2y=7y-5 | | 2q-8=-6q | | -5+2/x=35 | | 2*5x-2=11x |